3.574 \(\int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=304 \[ \frac{2 (3 a-b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right ),\frac{a+b}{a-b}\right )}{3 b d (a-b) (a+b)^{3/2}}-\frac{8 a b \tan (c+d x)}{3 d \left (a^2-b^2\right )^2 \sqrt{a+b \sec (c+d x)}}-\frac{2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}-\frac{8 a \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b d (a-b) (a+b)^{3/2}} \]

[Out]

(-8*a*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c
 + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*(a - b)*b*(a + b)^(3/2)*d) + (2*(3*a - b)*Cot[c
 + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(
a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*(a - b)*b*(a + b)^(3/2)*d) - (2*b*Tan[c + d*x])/(3*(a^2 -
b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (8*a*b*Tan[c + d*x])/(3*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.407995, antiderivative size = 304, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {3833, 4003, 4005, 3832, 4004} \[ -\frac{8 a b \tan (c+d x)}{3 d \left (a^2-b^2\right )^2 \sqrt{a+b \sec (c+d x)}}-\frac{2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}+\frac{2 (3 a-b) \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b d (a-b) (a+b)^{3/2}}-\frac{8 a \cot (c+d x) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (\sec (c+d x)+1)}{a-b}} E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right )}{3 b d (a-b) (a+b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-8*a*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c
 + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*(a - b)*b*(a + b)^(3/2)*d) + (2*(3*a - b)*Cot[c
 + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(
a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(3*(a - b)*b*(a + b)^(3/2)*d) - (2*b*Tan[c + d*x])/(3*(a^2 -
b^2)*d*(a + b*Sec[c + d*x])^(3/2)) - (8*a*b*Tan[c + d*x])/(3*(a^2 - b^2)^2*d*Sqrt[a + b*Sec[c + d*x]])

Rule 3833

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(b*Cot[e + f*x]*(a
 + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dist[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[m, -1] && IntegerQ[2*m]

Rule 4003

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[((A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 - b^2)), x] + Dis
t[1/((m + 1)*(a^2 - b^2)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b - a*B
)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] &
& LtQ[m, -1]

Rule 4005

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Dist[A - B, Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Dist[B, Int[(Csc[e + f*x]*(1 +
 Csc[e + f*x]))/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && NeQ[A
^2 - B^2, 0]

Rule 3832

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-2*Rt[a + b, 2]*Sqr
t[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Csc[e + f*x]))/(a - b))]*EllipticF[ArcSin[Sqrt[a + b*Csc[e +
f*x]]/Rt[a + b, 2]], (a + b)/(a - b)])/(b*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(-2*(A*b - a*B)*Rt[a + (b*B)/A, 2]*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[-((b*(1 + Cs
c[e + f*x]))/(a - b))]*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + (b*B)/A, 2]], (a*A + b*B)/(a*A - b*B)]
)/(b^2*f*Cot[e + f*x]), x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]

Rubi steps

\begin{align*} \int \frac{\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx &=-\frac{2 b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{2 \int \frac{\sec (c+d x) \left (-\frac{3 a}{2}+\frac{1}{2} b \sec (c+d x)\right )}{(a+b \sec (c+d x))^{3/2}} \, dx}{3 \left (a^2-b^2\right )}\\ &=-\frac{2 b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{8 a b \tan (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{4 \int \frac{\sec (c+d x) \left (\frac{1}{4} \left (3 a^2+b^2\right )+a b \sec (c+d x)\right )}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}\\ &=-\frac{2 b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{8 a b \tan (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}+\frac{(3 a-b) \int \frac{\sec (c+d x)}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 (a-b) (a+b)^2}+\frac{(4 a b) \int \frac{\sec (c+d x) (1+\sec (c+d x))}{\sqrt{a+b \sec (c+d x)}} \, dx}{3 \left (a^2-b^2\right )^2}\\ &=-\frac{8 a \cot (c+d x) E\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b (a+b)^{3/2} d}+\frac{2 (3 a-b) \cot (c+d x) F\left (\sin ^{-1}\left (\frac{\sqrt{a+b \sec (c+d x)}}{\sqrt{a+b}}\right )|\frac{a+b}{a-b}\right ) \sqrt{\frac{b (1-\sec (c+d x))}{a+b}} \sqrt{-\frac{b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b (a+b)^{3/2} d}-\frac{2 b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac{8 a b \tan (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt{a+b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 7.81277, size = 360, normalized size = 1.18 \[ -\frac{2 \sec ^3(c+d x) (a \cos (c+d x)+b) \left (2 a \cos ^2\left (\frac{1}{2} (c+d x)\right ) (a \cos (c+d x)+b) \left (-\left (3 a^2+4 a b+b^2\right ) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} \text{EllipticF}\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right ),\frac{a-b}{a+b}\right )+2 a \cos (c+d x) \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right ) (a \cos (c+d x)+b)+4 a (a+b) \sqrt{\frac{\cos (c+d x)}{\cos (c+d x)+1}} \sqrt{\frac{a \cos (c+d x)+b}{(a+b) (\cos (c+d x)+1)}} E\left (\sin ^{-1}\left (\tan \left (\frac{1}{2} (c+d x)\right )\right )|\frac{a-b}{a+b}\right )\right )+b^2 \left (b^2-a^2\right ) \sin (c+d x)-b \left (b^2-5 a^2\right ) \sin (c+d x) (a \cos (c+d x)+b)-4 a^2 \sin (c+d x) (a \cos (c+d x)+b)^2\right )}{3 a d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]/(a + b*Sec[c + d*x])^(5/2),x]

[Out]

(-2*(b + a*Cos[c + d*x])*Sec[c + d*x]^3*(b^2*(-a^2 + b^2)*Sin[c + d*x] - b*(-5*a^2 + b^2)*(b + a*Cos[c + d*x])
*Sin[c + d*x] - 4*a^2*(b + a*Cos[c + d*x])^2*Sin[c + d*x] + 2*a*Cos[(c + d*x)/2]^2*(b + a*Cos[c + d*x])*(4*a*(
a + b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticE
[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - (3*a^2 + 4*a*b + b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt
[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] + 2*a
*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2])))/(3*a*(a^2 - b^2)^2*d*(a + b*Sec[c +
d*x])^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.263, size = 1781, normalized size = 5.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x)

[Out]

-1/3/d/(a-b)^2/(a+b)^2*4^(1/2)*(-4*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos
(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3-4*cos(d*x+c)^2*a*b^
2-5*cos(d*x+c)^3*a^2*b+cos(d*x+c)^3*b^3+4*cos(d*x+c)^3*a^3-4*b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b
+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a+3*
a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1
+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b+4*b^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a-3*cos(d*x+c)*a
^2*b+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c
))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b^3*sin(d*x+c)-4*sin(d*x+c)*cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+
c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3+
3*cos(d*x+c)^2*sin(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*a^3-4*cos(d*x+c)^2*a^3-cos(d*x+c)*b^3+3*cos(d*x+c)*(co
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d
*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a^3+cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c
))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*b^3+8*cos(d*x+c)
^2*a^2*b+4*cos(d*x+c)*a*b^2-4*a^2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^
(1/2)*sin(d*x+c)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*b+7*cos(d*x+c)*(cos(d*x+c)/(cos(d*x
+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b
))^(1/2))*sin(d*x+c)*a^2*b+5*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c
)+1))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2-8*cos(d*x+c)*(cos(d*x+c
)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(
(a-b)/(a+b))^(1/2))*sin(d*x+c)*a^2*b-4*cos(d*x+c)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*sin(d*x+c)*a*b^2-4*sin(d*x+c)*
cos(d*x+c)^2*EllipticE((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+4*sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c
),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b
+sin(d*x+c)*cos(d*x+c)^2*EllipticF((-1+cos(d*x+c))/sin(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2)*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)/sin(d*x+c)/(
b+a*cos(d*x+c))^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)/(b*sec(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )}{b^{3} \sec \left (d x + c\right )^{3} + 3 \, a b^{2} \sec \left (d x + c\right )^{2} + 3 \, a^{2} b \sec \left (d x + c\right ) + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)/(b^3*sec(d*x + c)^3 + 3*a*b^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x
+ c) + a^3), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec{\left (c + d x \right )}}{\left (a + b \sec{\left (c + d x \right )}\right )^{\frac{5}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))**(5/2),x)

[Out]

Integral(sec(c + d*x)/(a + b*sec(c + d*x))**(5/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)/(b*sec(d*x + c) + a)^(5/2), x)